Second Order Lagrange Multiplier Spaces for Mortar Finite Elements in 3D

نویسندگان

  • Bishnu P. Lamichhane
  • Barbara I. Wohlmuth
چکیده

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a result, standard efficient iterative solvers as multigrid methods can be easily adapted to the nonconforming situation. We present the discretization errors in different norms for linear and quadratic mortar finite elements with different Lagrange multiplier spaces. Numerical results illustrate the performance of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quasi-dual Lagrange Multiplier Space for Serendipity Mortar Finite Elements in 3d

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained m...

متن کامل

Dual Quadratic Mortar Finite Element Methods for 3D Finite Deformation Contact

Mortar finite element methods allow for a flexible and efficient coupling of arbitrary nonconforming interface meshes and are by now quite well established in nonlinear contact analysis. In this paper, a mortar method for three-dimensional (3D) finite deformation contact is presented. Our formulation is based on so-called dual Lagrange multipliers, which in contrast to the standard mortar appro...

متن کامل

Mortar Finite Elements with Dual Lagrange Multipliers: Some Applications

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We consider mortar techniques with dual Lagrange multiplier spaces to couple different discretization schemes. It is well known that the discretization error for linear mortar finite elements in the energy norm is of order h. Here, we apply these techniques to curvilinear b...

متن کامل

Hierarchical a Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers

Hierarchical a posteriori error estimators are introduced and analyzed for mortar nite element methods. A weak continuity condition at the interfaces is enforced by means of Lagrange multipliers. The two proposed error estimators are based on a defect correction in higher order nite element spaces and an adequate hierarchical two-level splitting. The rst provides upper and lower bounds for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003